

Journal of Information Technology and Computer Science
Volume 5, Number 3, Desember 2020, pp. 302-312

Journal Homepage: www.jitecs.ub.ac.id

Development of Big Data App for Classification based on

Map Reduce of Naive Bayes with or without Web and

Mobile Interface by RESTful API Using Hadoop and Spark

 Imam Cholissodin1, Diajeng Sekar Seruni2, Junda Alfiah Zulqornain3, Audi Nuermey

Hanafi4, Afwan Ghofur5, Mikhael Alexander6, Muhammad Ismail Hasan7

1,2,3,4Faculty of Computer Science, Computer Science, Brawijaya University, Malang, Indonesia
5,6,7FGA Big Data Analytics Batch 2, Brawijaya University, Malang, Indonesia

1imamcs,@ub.ac.id, 2 diajengskr@gmail.com, 3 jundaa63@gmail.com, 4 udiafie27@gmail.com,
5 afwanghofur5@gmail.com, 6sandermik13@gmail.com, 7 muhisan10@gmail.com

Received: 05 August 2020; Accepted: 21 Desember 2020

Abstract. Big Data App is a developed framework that we made based on our

previous project research and we have uploaded it on github, which is developing
lightweight serverless both on Windows and Linux OS with the term of EdUBig

as Open Source Hadoop Distribution. In this study, the focus is on solving
problems related to difficulties in building a frontend and backend model of a

Big Data application which by default only runs scripts through consoles in the
terminal. This will be quite a tribulation for the end users when the Big Data

application has been released and mass produced to general users (end users) and
at the same time how the end users test the performance of the Map Reduce Naive

Bayes algorithm used in several datasets. In accordance to these problems, we
created the Big Data App framework to make the end users, especially

developers, feel easier to build a Big Data application by integrating the frontend
using the Web App from Django framework and Mobile App Native, while for

the backend, we use Django framework that is able to communicate directly with

the script either hadoop batch, streaming processing or spark streaming very
easily and also to use the script for pig, hive, web hdfs, sqoop, oozie, etc. the

making of which is extremely fast with reliable results. Based on the test results,
a very significant result in the ease of data computation processing by the end

users and the final results showing the highest classification accuracy of
88.3576% was obtained.

Keywords: big data, map reduce of naive bayes, serverless, web and mobile app,

restful api, django framework

1 Introduction
Development of Big Data applications in the blended form between conventional

coding with the native language of Big Data, which is java, and those already using

coding with high-level programming languages, for example using hadoop streaming,

which initially can only be run in batch processing to be able to run streaming using

python language, and pyspark streaming, all of which lead and / or have been

serverless-based, is very promising to produce applications that are fast in making and

reliable in terms of results [1][2][3]. Conditions that often arise in the making of

Artificial Intelligence (AI) algorithm-based Big Data applications as machine learning

such as Map Reduce Naive Bayes to a high level of Map Reduce Deep Learning

mailto:diajengskr@gmail.com
mailto:jundaa63@gmail.com
mailto:udiafie27@gmail.com
mailto:afwanghofur5@gmail.com
mailto:6sandermik13@gmail.com

Imam Cholissodin et al., Development Big Data App For Classification .. 303

p-ISSN: 2540-9433; e-ISSN: 2540-9824

algorithm [4][5] is that the majority applications are limited to the form of notebooks

(it is insufficient to be just like jupyter notebooks in local or public like Google colab,

AWS sage maker and others), or even scripts that are incomplete and fragmented into

small files that are very difficult to build in the form of a masterpiece application

production for Big Data App [6]. It is admittedly considered suitable for the need of

learning and training scale. If it is made for large-scale application production for the

society or for the initiative to begin making start-ups, however, it is considered very far

away from the goal as the final step of production that must be achieved.

Thus, the problem that often comes up when developing Big Data applications is

the infrastructure readiness both the on-premise (the physical form in local or private)

and the public (the non-physical in the cloud such as GCP or AWS or others) from the

hardware as an adequate server, or in the form of a combination of private and public,

both of which are associated with the development of backend and frontend that by

default is usually in the form of a console. Consequently, developers are difficult to

create visual applications in the form of a web or mobile interface as the frontend

[7][8][9][10]. Therefore, in this study, a link between the frontend and the backend is

created and as a test of the performance of the algorithm for the computational results

of the dataset, the Map Reduce Naive Bayes algorithm, where the backend is the default

tool of apache, which by standard uses WebHDFS and Spark API, both of which are

accessible and run through the console in the terminal, is utilized. After that, we made

an easier solution by using Django framework from python which acts as the frontend

of the Web App (Web Interface Big Data App) and backend web services at the same

time. Meanwhile, the Mobile App only serves as the frontend (Mobile Interface Big

Data App) while the backend still uses Django framework. We use both of these

solutions to communicate between the data using the Representational state transfer and

Application program interface (RESTful API) which will later be converted into a file

in json format.

2 Method

2.1 About Dataset

The dataset used in this study are of two kinds, the first of which is the data on activity

as the smallest data sampling that we take from Naik (2016) as the data material to

create a simulation of testing process within the Big Data App framework [11]. The

data of this activity consist of three features and four classes, which are slightly

modified. The second data is Nursery School, which contains the data about preschool

education or commonly called kindergarten (TK), which is a form of formal education

that is employed to assist the physical and spiritual growth and development of children

in order to obtain the readiness to enter further education acquired from the UCI

Repository. This dataset has 12,960 data and 8 attributes / features, i.e. parents referring

to the work of parents (usual, pretentious, great_pret), has_nurs referring to child

caretakers at home (proper, less_proper, improper, critical, very_crit), form referring to

family completeness (complete, completed, incomplete, foster), children referring to

the number of children (one, two, three, more), housing referring to house condition

(convenient, less_conv, critical), finance referring to financial condition (convenient,

inconv), social referring to social condition (non-prob, slightly_prob, problematic) , and

health referring to health condition (recom, priority, not_recom).

Although both data can be considered quite small, which means that they are not

able to represent Big Data in terms of volume yet, they are still able to meet the criteria

in terms of Map Reduce computational complexity in the utilized algorithms since it is

definitely required to adjust to every stage of the Big Data ecosystem, where the Big

304 JITeCS Volume 5, Number 3, Desember 2020, pp 302-312

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Data process is available in the form of Map and Reduce, both batch (Map Reduce

Hadoop) or Streaming processing (Spark RDD or Spark SQL) on distributed

computation. The illustration of the activities is displayed in Fig. 1.

Figure 1. Daily activities accessed [12]

2.2 Naive Bayes Map Reduce

Naive Bayes can be implemented by using Non Map Reduce (Non-MR) and Map

Reduce (MR). For utilizing MR, Hadoop framework, which has 2 kinds of components,

i.e. Hadoop Distributed File System (HDFS) as the data storage medium and Map

Reduce as the very large data processor (Big Data), is applicable. Map Reduce initially

had two components, i.e. Job Tracker and Task Tracker. Job Tracker is a component on

the Master computer, and Task Tracker is a component on the Slave computer. Since

Hadoop 2.x, however, “Job Tracker” has been deprecated and replaced by “Resource

Manager”, and “Task Tracker” has also been deprecated and replaced by “Node

Manager” in Map Reduce version 2 (MRv2) [13].

Figure 2 (a) and (b) show MR pipeline. First, the mapper receives (key, value) and

the output is (key, value) where #partitions expresses the number of nodes in the cluster

(multi-node), the second is partitioning / sorting / grouping that carries out

Iterable[value] and scaling, and finally, the reducer process accepts (key,

Iterable[value]) the output of which is (key, value) as the final result. Meanwhile,

Figure 3 represent the MR manualization process in Word Count. Map Function is

utilized to read the file input in the form of pairs of key and value, then to produce pairs

of key and value output that have already been grouped with a base key, and to add

“sort and shuffle” process. On the other hand, Reduce Function is employed to read the

results of “key and value” output that have already been grouped with a base key from

the results of the Map Function, then to calculate or counter the total value for each key

group. Therefore, Reduce Function produces a “key and value” output with a unique

key accompanied by a value from the counter results.

(a)

Imam Cholissodin et al., Development Big Data App For Classification .. 305

p-ISSN: 2540-9433; e-ISSN: 2540-9824

(b)

Figure 2. MR Pipeline [14,15]

Figure 3. MR Word Count for fundamental MR of Naive Bayes [16, 17]

The following is the steps of Naive Bayes algorithms using MR, for example simple

data [11][18][19][20] are used in this detailed process:

1. Loading test and training data

• Test of data loading process, on the Map process:

Where in the test data, feature 1 = “Urgent”, feature 2 = “Yes”, feature 3 =

“Yes”. Then, it will obtain the result of Class = “?”. Feature 1 states “What

is the nature of task deadline?”, feature 2 states “Is there no Coding task? ,

and feature 3 states “Are there not many tasks?”.

• Loading training data (in the next step, i.e. Calculate Prior Opportunities

and Likelihood)

2. Calculating Prior Opportunities of each class

Final Result:

File Input

arg[0]

1 line of data test will be set
as a single mapper

Urgent,Yes,Yes

Split based “,” which later can
be a part that forms Key

for the calculation of Likelihood, etc.

test_input[0] = "Urgent"
test_input[1] = "Yes"
test_input[2] = "Yes"

306 JITeCS Volume 5, Number 3, Desember 2020, pp 302-312

p-ISSN: 2540-9433; e-ISSN: 2540-9824

 The results of each class’ folder are iterated until the last data.

The map process, for example, with “prior_count” variable automatically

performs iteration (increments +1 if a suitable key is found in the class column)

until the last data even though the Mapper program code does not show the

“for” looping syntax. Finally, in the Final Map Results, each value for example

is stored in the prior_ count <key, value> variable in the form of HashMap, and

has not been shared with many data trains. Hence, the value is not yet in the

interval [0,1].

3. Calculating Likelihood Opportunities (Opportunities for discrete or qualitative

features to Class)

The thing that is required to perform first is to make a variable declaration, for

example with the name of “count” to calculate the amount of training data and

variable declaration for likelihood opportunities, for example with the name of

“features_count” to accommodate the likelihood value, i.e. by carrying out the

HashMap class instantiation (to create features_count objects), then, to put in

as content on the String as key = {“ feature index”+”,”+” feature values”+”|”+”

class”}, while at Double as value = double type value, the application on the

calculation of which states “the number of feature emergence to the class

divided by the number of class emergence in the training data” = [0;1].

It is known in the test data that feature 1 = “Urgent”, 2 = “Yes”, 3 = “Yes”.

key
with
String type

value with
Double type Map Result:

 (“Reading”,1)

Focus on the “Class” column

key
with
String type

value with Double type
 Final Map Result:
 (“Reading”,1+1+..+1 = 5)
 (“Learn”,1+1+1 = 3)
 (“Listening”,1)
 (“Thinking”,1)

File Input
(loading training data)

Urgent,Yes,Yes,Reading
Urgent,No,Yes,Learn
Near,Yes,Yes,Reading
None,Yes,No,Reading
None,No,Yes,Listening
None,Yes,No,Reading
Near,No,No,Learn
Near,No,Yes,Thinking
Near,Yes,Yes,Reading
Urgent,No,No,Learn

Each line of the test data will be set
as a single mapper

Urgent,Yes,Yes,Reading

Split based “,” which later can
be a part that forms Key

for the calculation of Likelihood, etc.

input[0] = "Urgent"
input[1] = "Yes"
input[2] = "Yes“
input[3] = “Reading"

Final Result:

Urgent,No,No,Learn

input[0] = "Urgent"
input[1] = “No"
input[2] = “No“
input[3] = “Learn"

As many as 10 times
or as many as thedata training

As many as 10 times
or as many as thedata training

filtered based on the feature values on the test data below, to calculate the Likelihood value

feature index (j)
 j = 0 j = 1 j = 2 j = 3

Imam Cholissodin et al., Development Big Data App For Classification .. 307

p-ISSN: 2540-9433; e-ISSN: 2540-9824

The map process will automatically carry out iteration (increment +1 if the

corresponding key is found in feature 1 to 3 columns to the class) until the last

data. In addition, the number of training data on the count variable = 10 from

the result of ++ count code from the scanning process of all training data is also

obtained. In the likelihood of zero, a smoothing process can be used, which is

carried out by replacing the zero value with a number > 0, for example 10-8 to

10-5 or the others.

4. Calculating Posterior Opportunities (Class opportunities to features)

Posterior opportunities derive from multiplying the Likelihood opportunities

and the class emergence opportunities (Prior).

5. Determining Classification Results

After obtaining all the posterior values from each class, the next step is to

determine the class for the test data. Class determination is carried out by

comparing the posterior values between classes. The highest posterior value

will be the class for the test data.

2.3 Proposed Development of Big Data App Based on Map Reduce of Naive

Bayes Algorithm on Desktop, Web and Mobile Interface by RESTful API

Using Hadoop and Spark
The developed desktop-based implementation utilizes Netbeans and the web employs

Python and Django Framework programming language for Backend, and CSS, HTML,

Javascript for Frontend to integrate with Spark and Hadoop. Meanwhile, the Android-

 Map Result (filtered by features on the test data):
 (“0,Urgent|Reading”,1)
 (“1,Yes|Reading”,1)
 (“2,Yes|Reading”,1)

Focus on Feature 1, Feature 2, Feature 3,
and Class columns

Focus on Feature 1, Feature 2, Feature 3,
and Class columns

 Map Result (filtered by features on the test data):
 (“0,Urgent|Reading”,1)
 (“1,Yes|Reading”,1)
 (“2,Yes|Reading”,1)
 (“0,Urgent|Learn”,1)
 (“2,Yes|Learn”,1)

feature index (j)
 j = 0 j = 1 j = 2 j = 3

feature index (j)
 j = 0 j = 1 j = 2 j = 3

Focus on Feature 1, Feature 2, Feature 3,
and Class columns

 Map Result (filtered by features on the test data):
 (“0,Urgent|Reading”,1)

 (“1,Yes|Reading”,1+1+1+1+1=5)
 (“2,Yes|Reading”,1+1+1=3)
 (“0,Urgent|Learn”,1+1=2)
 (“2,Yes|Learn”,1)
 (“2,Yes|Listening”,1)
 (“2,Yes|Thinking”,1)

 (“1,Yes|Learn”,0)
 (“0,Urgent|Listening”,0)
 (“1,Yes|Listening”,0)
 (“0,Urgent|Thinking”,0)
 (“1,Yes|Thinking”,0)

308 JITeCS Volume 5, Number 3, Desember 2020, pp 302-312

p-ISSN: 2540-9433; e-ISSN: 2540-9824

based application utilizes Java programming language so that the compiling result is an

android native application. The database is not employed in this application because the

data process utilizes ResftFul API created in Django Framework and the development

uses Android Studio. Specific for web-based implementation, it is deployed on cloud

computing from AWS, i.e. the EC2 where the environment is the place where the

application is run, and the data processing is on Spark and Hadoop.

01

02

03

04

05

06

07

08

09

def function_post_nb_run(request):

 if request.method == 'POST':

 cetak = nb_run(request, False)

 #render

 return render(request, page.html', {

 'prediction' : cetak

 })

 else:

 return render(request, page.html')

Source Code 1. View.py from Django Framework (part 1)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

def nb_run(request, type_api=True):

 # make unique directory

 output_dir = randomString(10)

 if type_api:

 payload = json.loads(request.body)

 feature_1 = payload['feature_1']

 feature_2 = payload['feature_2']

 feature_3 = payload['feature_3']

 else:

 feature_1 = request.POST['feature_1']

 feature_2 = request.POST['feature_2']

 feature_3 = request.POST['feature_3']

 # merge input

 dataInput = feature_1 + "," + feature_2 + "," + feature_3

 #run hadoop

 exitcode, stdout, stdin = run_process([HADOOP_BIN, 'jar',

 'hadoop/NBMapReduce/NBMapReduce.jar', 'NBCDriver', \

 dataInput, '/user/ubuntu/nb-input/dataset.txt', \

 '/user/ubuntu/nb-output/'+output_dir])

 #Return if error occured

 if exitcode:

 save_result = exitcode

 else:

 save_result = run_process([HADOOP_BIN, 'fs', '-cat' , \

 '/user/ubuntu/nb-output/'+output_dir+'/*'])

 #delete output dir

 run_process([HADOOP_BIN, "fs", "-rm", "-r", \

 '/user/ubuntu/nb-output/'+output_dir])

 #return

 return save_result[1]

Source Code 2. View.py from Django Framework (part 2)

01

02

03

#run spark

run_process([SPARK_BIN, 'spark/pyspark_nb.py', number_features, \

"file://"+file_input, "file://"+dir_output])

Source Code 3. View.py from Django Framework (part 3)

Imam Cholissodin et al., Development Big Data App For Classification .. 309

p-ISSN: 2540-9433; e-ISSN: 2540-9824

In accordance with Source Code 1 and 2, “#run hadoop” section is to run Hadoop

MapReduce Java, the “print = run_process” is to read its results that are stored in

variable, and “run_process” is to delete the temporary folder that is used to save the

output file. Meanwhile, in Source Code 3, the “#run spark” section is to run Spark. In

Fig. 4, as an instance, “HADOOP_BIN jar NBMapReduce.jar NBCDriver

Urgent,No,No /user/ubuntu/nb-input/dataset.txt /user/ubuntu/nb-output/+output_dir” is

input here. During the data processing, it is possible to observe the log on the terminal

that is running the django server. The output readings will also be displayed, including

the temporary folder.

(a)

(b)

(c)

Figure 4. Terminal, Web and Mobile that are running the django server

3 Results and Discussion
Testing the number of training data in the classification program using Naïve Bayes

with Hadoop which was run was carried out 4 times (50%, 60%, 70%, and 80% training

310 JITeCS Volume 5, Number 3, Desember 2020, pp 302-312

p-ISSN: 2540-9433; e-ISSN: 2540-9824

data of the total 12,960 data) where each experiment had the same 5 types of test data.

The test data utilized can be observed in Table 1.

Table 1. Test Results of the Number of NB Training Data on Hadoop

Experiment
number i

Number
of

Training
Data

Test Data
number j

Execution Time
(s)

Average Execution
Time (s)

1 6480

1 3

3.2

2 3

3 3

4 3

5 4

2 7776

1 3

3

2 3

3 3

4 3

5 3

3 9072

1 3

3

2 3

3 3

4 3

5 3

4 10368

1 3

3.4

2 3

3 4

4 3

5 4

The results of testing the number of training data for the Naïve Bayes classification

on Hadoop displayed in Table 1 produce an average value of execution time that is not

much different. Of the four experiments, the shortest execution time was generated in

the 2nd and 3rd experiments even though both trials had different number of training

data. The resulting execution time was, however, the same. From these experiments, it

can be suggested that the number of training data has no significant effect on the

execution time when using Hadoop with MapReduce.

Table 2. Test Results of the Number of NB Training Data on Spark

Trial
number i

Number
of

Training
Data

Total of
Test Data

Test error
Accuracy =

(1- Test Error)

Total
Execution
Time (s)

1 6364 6596 0.150849 0.849151 10.95

2 12479 481 0.116424 0.883576 6.87

3 12640 320 0.140625 0.859375 10.74

4 12738 222 0.193694 0.806306 9.11

5 12841 119 0.117647 0.882353 8.61

From the test results shown in Table 2, the obtained result of the 2nd experiment

Imam Cholissodin et al., Development Big Data App For Classification .. 311

p-ISSN: 2540-9433; e-ISSN: 2540-9824

producing the shortest execution time and smallest error test value indicated that the

classification can be considered good because the error rate was only 0.116424 or

equivalent to the accuracy value of 0.883576, with training data of 12479 and test data

of 481. Meanwhile, the longest execution time was generated in the 1st experiment with

a total execution time of 10.95 seconds. The thing that causes the execution time to run

longer is the number of test data that exceeds the training data so that the classification

process runs longer.

4 Conclusion

Based on the test results, the number of training data and test data for student

enrollment classification in Nursery School using Naïve Bayes and Tools Big Data

(Hadoop and Spark), there are some conclusions to draw. First, Naïve Bayes algorithm

can solve problems on student enrollment classification in Nursery School. This is

carried out using the MapReduce technique in the Naïve Bayes classification. Second,

the smallest error value and the shortest execution time are generated by experiments

with the comparison of training data and test data of 0.25:0.01 respectively with an error

value of 0.116424 or equivalent to the accuracy value of 0.883576 (88.3576%) and an

execution time of 6.87 seconds. Then, as a suggestion for the next research, it is

important to attempt to perform multi-node testing, on/off node on Hadoop or Spark,

which will be more precise and detailed in calculating the computation time and the

accuracy results as a measure of performance as well.

References
1. Juneja, P., and Kaur, P., (2019). "Software Engineering for Big Data Application

Development: Systematic Literature Survey Using Snowballing," 2019 International

Conference on Computing, Power and Communication Technologies (GUCON), NCR

New Delhi, India, 2019, pp. 492-496.

2. Hui, Y., and Zesong, L., (2019). "Research on Real-time Analysis and Hybrid Encryption

of Big Data," 2019 2nd International Conference on Artificial Intelligence and Big Data

(ICAIBD), Chengdu, China, 2019, pp. 52-55, doi: 10.1109/ICAIBD.2019.8836992.

3. Gunaratna, K., Anderson, P., Ranabahu, A., and Sheth, A., (2010). "A Study in Hadoop

Streaming with Matlab for NMR Data Processing," 2010 IEEE Second International

Conference on Cloud Computing Technology and Science, Indianapolis, IN, 2010, pp. 786-

789, doi: 10.1109/CloudCom.2010.70.

4. Hiranandani, P., Pilli, E. S., Chand, N., Ramakrishna, C., and Gupta, M., (2018). "Big Data

Analytics Using Multi-Classifier Approach with Rhadoop," 2018 8th International

Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, 2018,

pp. 478-484, doi: 10.1109/CONFLUENCE.2018.8442876.

5. Khader, M., Awajan, A. and Al-Naymat, G., (2018). "The Effects of Natural Language

Processing on Big Data Analysis: Sentiment Analysis Case Study," 2018 International Arab

Conference on Information Technology (ACIT), Werdanye, Lebanon, 2018, pp. 1-7, doi:

10.1109/ACIT.2018.8672697.

6. Herraiz, I., (2018). “Notebooks are not enough: how to deliver machine learning products

without getting killed”. https://www.bigdataspain.org/2018/talk/notebooks-are-not-

enough-how-to-deliver-machine-learning-products-without-getting-killed/ accessed on

July 30, 2020.

7. Miao, K., Li, J., Hong, W. & Chen, M. (2020). “A Microservice-Based Big Data Analysis

Platform for Online Educational Applications”. Annual Review of Anthropology, 2020, [

"6929750"]. Available from: https://doi.org/10.1146/annurev.anthro.33.070203.144008

8. Roy, S., et al., (2017). "IoT, big data science & analytics, cloud computing and mobile app

based hybrid system for smart agriculture," 2017 8th Annual Industrial Automation and

312 JITeCS Volume 5, Number 3, Desember 2020, pp 302-312

p-ISSN: 2540-9433; e-ISSN: 2540-9824

Electromechanical Engineering Conference (IEMECON), Bangkok, 2017, pp. 303-304,

doi: 10.1109/IEMECON.2017.8079610.

9. Dabek, F., (2016). "Leveraging Big Data to Provide a Web Service That Provides the

Likelihood of Developing Psychological Conditions after a Concussion," 2016 IEEE

International Conference on Mobile Services (MS), San Francisco, CA, 2016, pp. 160-165,

doi: 10.1109/MobServ.2016.32.

10. Andy a., (2016). “Cloud Computing Part 5: SaaS (Software as a Service)”.

https://andypi.co.uk/2016/05/23/cloud-computing-part-5-saas-software-as-a-service/

accessed on July 30, 2020.

11. Naik, P. (2016). “MLHadoop”. https://github.com/punit-

naik/MLHadoop/tree/master/Naive_Bayes_Classifier_MapReduce accessed on October 1,

2016.

12. Gan, K. L., (2020). “Vector - Outdoor Club Games and Recreational Activities. Stick figure

depict outdoor games lawn bowling, canoe, archery, horse riding, roller coaster, wall

climbing, water park, swimming pool, and golf course”.

https://www.123rf.com/photo_81783678_stock-vector-outdoor-club-games-and-

recreational-activities-stick-figure-depict-outdoor-games-lawn-bowling-canoe-.html

accessed on March 8, 2020.

13. Putra, N. A., Putri, A. T., Prabowo, D. A., Surtiningsih, L., Arniantya, R., Cholissodin, I.

(2017). “Klasifikasi Sepeda Motor Berdasarkan Karakteristik Konsumen Dengan Metode

K-Nearest Neighbour Pada Big Data Menggunakan Hadoop Single Node Cluster”. Jurnal

Teknologi Informasi dan Ilmu Komputer (JTIIK) FILKOM UB Vol. 4 No. 2, 81-86.

14. Naveen, N. (2020). “Hadoop MapReduce – Key Features & Highlights”.

https://intellipaat.com/blog/tutorial/big-data-and-hadoop-tutorial/hadoop-mapreduce-key-

features-highlights/ accessed on March 8, 2020.

15. stackchief. (2017). “MapReduce Quick Explanation”.

https://www.stackchief.com/blog/MapReduce%20Quick%20Explanation accessed on

March 8, 2020.

16. Kodžoman, V. (2019). “The hidden cost of shuffle – MapReduce”.

https://datawhatnow.com/mapreduce-shuffle-sort/ accessed on March 8, 2020.

17. Lee, D. (2018). “RaspPi-Cluster”. https://github.com/daviddwlee84/RaspPi-

Cluster/blob/master/Notes/Distributed_Computing/MapReduce.md accessed on March 8,

2020.

18. Cholissodin, I., Riyandani, E. (2016). “Analisis Big Data”. Fakultas Ilmu Komputer

(Filkom), Universitas Brawijaya (UB), Malang.

19. Maryamah, M., Asikin, M. F., Kurniawaty, D., Sari, S. K., Cholissodin, I. (2016).

“Implementasi Metode Naïve Bayes Classifier Untuk Seleksi Asisten Praktikum Pada

Simulasi Hadoop Multinode Cluster”. Jurnal Teknologi Informasi dan Ilmu Komputer

(JTIIK) FILKOM UB Vol. 3 No. 4, 273-278.

20. Cholissodin, I. and Supianto, A. A., "Enhancement Full Open Source Hadoop Distribution

Universal Big Data Up Projects (UBig) From Education To Enterprise," 2019 International

Conference on Sustainable Information Engineering and Technology (SIET), Lombok,

Indonesia, 2019, pp. 90-93, doi: 10.1109/SIET48054.2019.8986040.

