
 
 
 
 

Journal of Information Technology and Computer Science 
Volume 5, Number 3, Desember 2020, pp. 302-312 

Journal Homepage: www.jitecs.ub.ac.id 
 

       
 

 

Development of Big Data App for Classification based on 

Map Reduce of Naive Bayes with or without Web and 

Mobile Interface by RESTful API Using Hadoop and Spark 

 
 Imam Cholissodin1, Diajeng Sekar Seruni2, Junda Alfiah Zulqornain3, Audi Nuermey 

Hanafi4, Afwan Ghofur5, Mikhael Alexander6, Muhammad Ismail Hasan7 

1,2,3,4Faculty of Computer Science, Computer Science, Brawijaya University, Malang, Indonesia 
5,6,7FGA Big Data Analytics Batch 2, Brawijaya University, Malang, Indonesia 

1imamcs,@ub.ac.id, 2 diajengskr@gmail.com, 3 jundaa63@gmail.com, 4 udiafie27@gmail.com, 
5 afwanghofur5@gmail.com, 6sandermik13@gmail.com, 7 muhisan10@gmail.com 

Received: 05 August 2020; Accepted: 21 Desember 2020 

 
Abstract. Big Data App is a developed framework that we made based on our 

previous project research and we have uploaded it on github, which is developing 
lightweight serverless both on Windows and Linux OS with the term of EdUBig 

as Open Source Hadoop Distribution. In this study, the focus is on solving 
problems related to difficulties in building a frontend and backend model of a 

Big Data application which by default only runs scripts through consoles in the 
terminal. This will be quite a tribulation for the end users when the Big Data 

application has been released and mass produced to general users (end users) and 
at the same time how the end users test the performance of the Map Reduce Naive 

Bayes algorithm used in several datasets. In accordance to these problems, we 
created the Big Data App framework to make the end users, especially 

developers, feel easier to build a Big Data application by integrating the frontend 
using the Web App from Django framework and Mobile App Native, while for 

the backend, we use Django framework that is able to communicate directly with 

the script either hadoop batch, streaming processing or spark streaming very 
easily and also to use the script for pig, hive, web hdfs, sqoop, oozie, etc. the 

making of which is extremely fast with reliable results. Based on the test results, 
a very significant result in the ease of data computation processing by the end 

users and the final results showing the highest classification accuracy of 
88.3576% was obtained. 

 
Keywords: big data, map reduce of naive bayes, serverless, web and mobile app, 
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1 Introduction  
Development of Big Data applications in the blended form between conventional 

coding with the native language of Big Data, which is java, and those already using 

coding with high-level programming languages, for example using hadoop streaming, 

which initially can only be run in batch processing to be able to run streaming using 

python language, and pyspark streaming, all of which lead and / or have been 

serverless-based, is very promising to produce applications that are fast in making and 

reliable in terms of results [1][2][3]. Conditions that often arise in the making of 

Artificial Intelligence (AI) algorithm-based Big Data applications as machine learning 

such as Map Reduce Naive Bayes to a high level of Map Reduce Deep Learning 
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algorithm [4][5] is that the majority applications are limited to the form of notebooks 

(it is insufficient to be just like jupyter notebooks in local or public like Google colab, 

AWS sage maker and others), or even scripts that are incomplete and fragmented into 

small files that are very difficult to build in the form of a masterpiece application 

production for Big Data App [6]. It is admittedly considered suitable for the need of 

learning and training scale. If it is made for large-scale application production for the 

society or for the initiative to begin making start-ups, however, it is considered very far 

away from the goal as the final step of production that must be achieved. 

Thus, the problem that often comes up when developing Big Data applications is 

the infrastructure readiness both the on-premise (the physical form in local or private) 

and the public (the non-physical in the cloud such as GCP or AWS or others) from the 

hardware as an adequate server, or in the form of a combination of private and public, 

both of which are associated with the development of backend and frontend that by 

default is usually in the form of a console. Consequently, developers are difficult to 

create visual applications in the form of a web or mobile interface as the frontend 

[7][8][9][10]. Therefore, in this study, a link between the frontend and the backend is 

created and as a test of the performance of the algorithm for the computational results 

of the dataset, the Map Reduce Naive Bayes algorithm, where the backend is the default 

tool of apache, which by standard uses WebHDFS and Spark API, both of which are 

accessible and run through the console in the terminal, is utilized. After that, we made 

an easier solution by using Django framework from python which acts as the frontend 

of the Web App (Web Interface Big Data App) and backend web services at the same 

time. Meanwhile, the Mobile App only serves as the frontend (Mobile Interface Big 

Data App) while the backend still uses Django framework. We use both of these 

solutions to communicate between the data using the Representational state transfer and 

Application program interface (RESTful API) which will later be converted into a file 

in json format. 

 

2 Method 
 
2.1 About Dataset 

The dataset used in this study are of two kinds, the first of which is the data on activity 

as the smallest data sampling that we take from Naik (2016) as the data material to 

create a simulation of testing process within the Big Data App framework [11]. The 

data of this activity consist of three features and four classes, which are slightly 

modified. The second data is Nursery School, which contains the data about preschool 

education or commonly called kindergarten (TK), which is a form of formal education 

that is employed to assist the physical and spiritual growth and development of children 

in order to obtain the readiness to enter further education acquired from the UCI 

Repository. This dataset has 12,960 data and 8 attributes / features, i.e. parents referring 

to the work of parents (usual, pretentious, great_pret), has_nurs referring to child 

caretakers at home (proper, less_proper, improper, critical, very_crit), form referring to 

family completeness (complete, completed, incomplete, foster), children referring to 

the number of children (one, two, three, more), housing referring to house condition 

(convenient, less_conv, critical), finance referring to financial condition (convenient, 

inconv), social referring to social condition (non-prob, slightly_prob, problematic) , and 

health referring to health condition (recom, priority, not_recom). 

Although both data can be considered quite small, which means that they are not 

able to represent Big Data in terms of volume yet, they are still able to meet the criteria 

in terms of Map Reduce computational complexity in the utilized algorithms since it is 

definitely required to adjust to every stage of the Big Data ecosystem, where the Big 
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Data process is available in the form of Map and Reduce, both batch (Map Reduce 

Hadoop) or Streaming processing (Spark RDD or Spark SQL) on distributed 

computation. The illustration of the activities is displayed in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Daily activities accessed [12] 

 

2.2 Naive Bayes Map Reduce 

Naive Bayes can be implemented by using Non Map Reduce (Non-MR) and Map 

Reduce (MR). For utilizing MR, Hadoop framework, which has 2 kinds of components, 

i.e. Hadoop Distributed File System (HDFS) as the data storage medium and Map 

Reduce as the very large data processor (Big Data), is applicable. Map Reduce initially 

had two components, i.e. Job Tracker and Task Tracker. Job Tracker is a component on 

the Master computer, and Task Tracker is a component on the Slave computer. Since 

Hadoop 2.x, however, “Job Tracker” has been deprecated and replaced by “Resource 

Manager”, and “Task Tracker” has also been deprecated and replaced by “Node 

Manager” in Map Reduce version 2 (MRv2) [13]. 

Figure 2 (a) and (b) show MR pipeline. First, the mapper receives (key, value) and 

the output is (key, value) where #partitions expresses the number of nodes in the cluster 

(multi-node), the second is partitioning / sorting / grouping that carries out 

Iterable[value] and scaling, and finally, the reducer process accepts (key, 

Iterable[value]) the output of which is (key, value) as the final result. Meanwhile, 

Figure 3 represent the MR manualization process in Word Count. Map Function is 

utilized to read the file input in the form of pairs of key and value, then to produce pairs 

of key and value output that have already been grouped with a base key, and to add 

“sort and shuffle” process. On the other hand, Reduce Function is employed to read the 

results of “key and value” output that have already been grouped with a base key from 

the results of the Map Function, then to calculate or counter the total value for each key 

group. Therefore, Reduce Function produces a “key and value” output with a unique 

key accompanied by a value from the counter results. 

 
(a) 
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(b) 

 
Figure 2. MR Pipeline [14,15] 

 
Figure 3. MR Word Count for fundamental MR of Naive Bayes [16, 17] 

 

The following is the steps of Naive Bayes algorithms using MR, for example simple 

data [11][18][19][20] are used in this detailed process: 

1. Loading test and training data 

•  Test of data loading process, on the Map process: 

 

 

 

 

 

 

 

 

Where in the test data, feature 1 = “Urgent”, feature 2 = “Yes”, feature 3 = 

“Yes”. Then, it will obtain the result of Class = “?”. Feature 1 states “What 

is the nature of task deadline?”, feature 2 states “Is there no Coding task? , 

and feature 3 states “Are there not many tasks?”. 

• Loading training data (in the next step, i.e. Calculate Prior Opportunities 

and Likelihood) 

2. Calculating Prior Opportunities of each class 

Final Result: 

File Input 

arg[0] 

1 line of data test will be set  
as a single mapper 

Urgent,Yes,Yes 

Split based “,” which later can  
be a part that forms Key 

for the calculation of Likelihood, etc. 

test_input[0] = "Urgent" 
test_input[1] = "Yes" 
test_input[2] = "Yes" 
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 The results of each class’ folder are iterated until the last data. 

 
 

 

 
The map process, for example, with “prior_count” variable automatically 

performs iteration (increments +1 if a suitable key is found in the class column) 

until the last data even though the Mapper program code does not show the 

“for” looping syntax. Finally, in the Final Map Results, each value for example 

is stored in the prior_ count <key, value> variable in the form of HashMap, and 

has not been shared with many data trains. Hence, the value is not yet in the 

interval [0,1].  

 

3. Calculating Likelihood Opportunities (Opportunities for discrete or qualitative 

features to Class)  

The thing that is required to perform first is to make a variable declaration, for 

example with the name of “count” to calculate the amount of training data and 

variable declaration for likelihood opportunities, for example with the name of 

“features_count” to accommodate the likelihood value, i.e. by carrying out the 

HashMap class instantiation (to create features_count objects), then, to put in 

as content on the String as key = {“ feature index”+”,”+” feature values”+”|”+” 

class”}, while at Double as value = double type value, the application on the 

calculation of which states “the number of feature emergence to the class 

divided by the number of class emergence in the training data” = [0;1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is known in the test data that feature 1 = “Urgent”, 2 = “Yes”, 3 = “Yes”.  

 

key 
with 
String type 

value with 
Double type    Map Result: 

               (“Reading”,1) 
  

  

Focus on the “Class” column  

key 
with 
String type 

value with Double type 
   Final Map Result: 
               (“Reading”,1+1+..+1 = 5) 
               (“Learn”,1+1+1 = 3)  
               (“Listening”,1)  
               (“Thinking”,1)  
 

 

File Input 
(loading training data) 

Urgent,Yes,Yes,Reading 
Urgent,No,Yes,Learn 
Near,Yes,Yes,Reading 
None,Yes,No,Reading 
None,No,Yes,Listening 
None,Yes,No,Reading 
Near,No,No,Learn 
Near,No,Yes,Thinking 
Near,Yes,Yes,Reading 
Urgent,No,No,Learn 

Each line of the test data will be set  
as a single  mapper 

Urgent,Yes,Yes,Reading 

Split based “,” which later can  
be a part that forms Key 

for the calculation of Likelihood, etc. 

input[0] = "Urgent" 
input[1] = "Yes" 
input[2] = "Yes“ 
input[3] = “Reading" 

Final Result: 

Urgent,No,No,Learn 

input[0] = "Urgent" 
input[1] = “No" 
input[2] = “No“ 
input[3] = “Learn" 

As many as 10 times  
or as many as thedata training 

 

As many as 10 times  
or as many as thedata training 

filtered based on the feature values on the test data below, to calculate the Likelihood value 

feature index (j) 
 j = 0          j = 1          j = 2             j = 3 
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The map process will automatically carry out iteration (increment +1 if the 

corresponding key is found in feature 1 to 3 columns to the class) until the last 

data. In addition, the number of training data on the count variable = 10 from 

the result of ++ count code from the scanning process of all training data is also 

obtained. In the likelihood of zero, a smoothing process can be used, which is 

carried out by replacing the zero value with a number > 0, for example 10-8 to 

10-5 or the others. 

4. Calculating Posterior Opportunities (Class opportunities to features) 

Posterior opportunities derive from multiplying the Likelihood opportunities 

and the class emergence opportunities (Prior). 

5. Determining Classification Results 

After obtaining all the posterior values from each class, the next step is to 

determine the class for the test data. Class determination is carried out by 

comparing the posterior values between classes. The highest posterior value 

will be the class for the test data. 

 

2.3 Proposed Development of Big Data App Based on Map Reduce of Naive 

Bayes Algorithm on Desktop, Web and Mobile Interface by RESTful API 

Using Hadoop and Spark  
The developed desktop-based implementation utilizes Netbeans and the web employs 

Python and Django Framework programming language for Backend, and CSS, HTML, 

Javascript for Frontend to integrate with Spark and Hadoop. Meanwhile, the Android-

   Map Result (filtered by features on the test data): 
               (“0,Urgent|Reading”,1) 
               (“1,Yes|Reading”,1) 
               (“2,Yes|Reading”,1) 
 

      
  
  

Focus on Feature 1, Feature 2, Feature 3, 
and Class columns 

Focus on Feature 1, Feature 2, Feature 3, 
and Class columns 

 
   Map Result (filtered by features on the test data): 
               (“0,Urgent|Reading”,1) 
               (“1,Yes|Reading”,1) 
               (“2,Yes|Reading”,1) 
               (“0,Urgent|Learn”,1) 
               (“2,Yes|Learn”,1) 
 

 
      
  
  

feature index (j) 
 j = 0          j = 1          j = 2             j = 3 

feature index (j) 
 j = 0          j = 1          j = 2             j = 3 

Focus on Feature 1, Feature 2, Feature 3, 
and Class columns 

 
   Map Result (filtered by features on the test data): 
               (“0,Urgent|Reading”,1) 

      (“1,Yes|Reading”,1+1+1+1+1=5) 
      (“2,Yes|Reading”,1+1+1=3) 
      (“0,Urgent|Learn”,1+1=2) 
      (“2,Yes|Learn”,1) 
      (“2,Yes|Listening”,1) 
      (“2,Yes|Thinking”,1) 
 

      (“1,Yes|Learn”,0) 
      (“0,Urgent|Listening”,0) 
      (“1,Yes|Listening”,0) 
      (“0,Urgent|Thinking”,0) 
      (“1,Yes|Thinking”,0) 
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based application utilizes Java programming language so that the compiling result is an 

android native application. The database is not employed in this application because the 

data process utilizes ResftFul API created in Django Framework and the development 

uses Android Studio. Specific for web-based implementation, it is deployed on cloud 

computing from AWS, i.e. the EC2 where the environment is the place where the 

application is run, and the data processing is on Spark and Hadoop. 

 
01 

02 

03 

04 

05 

06 

07 

08 

09 

def function_post_nb_run(request): 

 if request.method == 'POST': 

  cetak = nb_run(request, False) 

  #render 

  return render(request, page.html', { 

  'prediction' : cetak 

  }) 

 else: 

  return render(request, page.html') 

 
Source Code 1. View.py from Django Framework (part 1) 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

def nb_run(request, type_api=True): 

 # make unique directory 

 output_dir = randomString(10)  

 

 if type_api: 

  payload = json.loads(request.body) 

  feature_1 = payload['feature_1'] 

  feature_2 = payload['feature_2'] 

  feature_3 = payload['feature_3'] 

 else: 

  feature_1 = request.POST['feature_1'] 

  feature_2 =  request.POST['feature_2'] 

  feature_3 =  request.POST['feature_3'] 

 # merge input  

 dataInput = feature_1 + "," + feature_2 + "," + feature_3 

 

 #run hadoop 

 exitcode, stdout, stdin = run_process([HADOOP_BIN, 'jar',      

              'hadoop/NBMapReduce/NBMapReduce.jar', 'NBCDriver', \  

              dataInput, '/user/ubuntu/nb-input/dataset.txt', \  

              '/user/ubuntu/nb-output/'+output_dir]) 

 #Return if error occured   

 if exitcode: 

     save_result = exitcode 

 else: 

     save_result = run_process([HADOOP_BIN, 'fs', '-cat' , \ 

            '/user/ubuntu/nb-output/'+output_dir+'/*']) 

 #delete output dir 

 run_process([HADOOP_BIN, "fs", "-rm", "-r", \ 

               '/user/ubuntu/nb-output/'+output_dir]) 

 #return 

 return save_result[1] 

 
Source Code 2. View.py from Django Framework (part 2) 

01 

02 

03 

#run spark 

run_process([SPARK_BIN, 'spark/pyspark_nb.py', number_features, \ 

"file://"+file_input, "file://"+dir_output]) 

 

Source Code 3. View.py from Django Framework (part 3) 
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In accordance with Source Code 1 and 2, “#run hadoop” section is to run Hadoop 

MapReduce Java, the “print = run_process” is to read its results that are stored in 

variable, and “run_process” is to delete the temporary folder that is used to save the 

output file. Meanwhile, in Source Code 3, the “#run spark” section is to run Spark. In 

Fig. 4, as an instance, “HADOOP_BIN jar NBMapReduce.jar NBCDriver 

Urgent,No,No /user/ubuntu/nb-input/dataset.txt /user/ubuntu/nb-output/+output_dir” is 

input here. During the data processing, it is possible to observe the log on the terminal 

that is running the django server. The output readings will also be displayed, including 

the temporary folder. 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

Figure 4. Terminal, Web and Mobile that are running the django server  

3    Results and Discussion 
Testing the number of training data in the classification program using Naïve Bayes 

with Hadoop which was run was carried out 4 times (50%, 60%, 70%, and 80% training 
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data of the total 12,960 data) where each experiment had the same 5 types of test data. 

The test data utilized can be observed in Table 1. 

 
Table 1. Test Results of the Number of NB Training Data on Hadoop 

Experiment  
number i 

Number 
of 

Training 
Data 

Test Data  
number j 

Execution Time 
(s) 

Average Execution 
Time (s) 

1 6480 

1 3 

3.2 

2 3 

3 3 

4 3 

5 4 

2 7776 

1 3 

3 

2 3 

3 3 

4 3 

5 3 

3 9072 

1 3 

3 

2 3 

3 3 

4 3 

5 3 

4 10368 

1 3 

3.4 

2 3 

3 4 

4 3 

5 4 

 

The results of testing the number of training data for the Naïve Bayes classification 

on Hadoop displayed in Table 1 produce an average value of execution time that is not 

much different. Of the four experiments, the shortest execution time was generated in 

the 2nd and 3rd experiments even though both trials had different number of training 

data. The resulting execution time was, however, the same. From these experiments, it 

can be suggested that the number of training data has no significant effect on the 

execution time when using Hadoop with MapReduce. 

 
Table 2. Test Results of the Number of NB Training Data on Spark 

Trial 
number i 

Number 
of 

Training 
Data 

Total of 
Test Data 

Test error 
Accuracy =  

(1- Test Error) 

Total 
Execution 
Time (s) 

1 6364 6596 0.150849 0.849151 10.95 

2 12479 481 0.116424 0.883576 6.87 

3 12640 320 0.140625 0.859375 10.74 

4 12738 222 0.193694 0.806306 9.11 

5 12841 119 0.117647 0.882353 8.61 

 
From the test results shown in Table 2, the obtained result of the 2nd experiment 
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producing the shortest execution time and smallest error test value indicated that the 

classification can be considered good because the error rate was only 0.116424 or 

equivalent to the accuracy value of 0.883576, with training data of 12479 and test data 

of 481. Meanwhile, the longest execution time was generated in the 1st experiment with 

a total execution time of 10.95 seconds. The thing that causes the execution time to run 

longer is the number of test data that exceeds the training data so that the classification 

process runs longer. 
 
4    Conclusion 

Based on the test results, the number of training data and test data for student 

enrollment classification in Nursery School using Naïve Bayes and Tools Big Data 

(Hadoop and Spark), there are some conclusions to draw. First, Naïve Bayes algorithm 

can solve problems on student enrollment classification in Nursery School. This is 

carried out using the MapReduce technique in the Naïve Bayes classification. Second, 

the smallest error value and the shortest execution time are generated by experiments 

with the comparison of training data and test data of 0.25:0.01 respectively with an error 

value of 0.116424 or equivalent to the accuracy value of 0.883576 (88.3576%) and an 

execution time of 6.87 seconds. Then, as a suggestion for the next research, it is 

important to attempt to perform multi-node testing, on/off node on Hadoop or Spark, 

which will be more precise and detailed in calculating the computation time and the 

accuracy results as a measure of performance as well. 
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